Abstract

The maximum likelihood principle has wide applications in system identification. This paper studies the maximum likelihood identification problems of the multivariate equation-error systems with colored noise. The system is broken down into several subsystems based on the number of the outputs. The key is to transform the subsystem into a controlled autoregressive moving average model and a noise model. Based on the maximum likelihood principle and the data filtering technique, a filtering-based maximum likelihood recursive generalized extended least squares algorithm is presented for estimating the parameters of these two models. For comparison, a maximum likelihood recursive generalized extended least squares algorithm is presented. Finally, the simulation example results confirm the effectiveness of the two algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.