Abstract

In this paper, we use the maximum likelihood principle and the data filtering technique to study the identification issue of the multivariate equation-error system whose outputs are contaminated by an ARMA noise process. The key is to break the system into several regressive identification subsystems based on the number of the outputs. Then a multivariate equation-error subsystem is transformed into a filtered model and a filtered noise model, and a filtering based maximum likelihood extended stochastic gradient algorithm is derived to estimate the parameters of these two models. The filtering based maximum likelihood extended stochastic gradient algorithm has higher parameter estimation accuracy than the maximum likelihood generalized extended stochastic gradient algorithm and the maximum likelihood recursive generalized extended least squares algorithm. The simulation examples indicate that the proposed methods work well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.