Abstract

Abstract The maximum-likelihood method is used to extract parameters of two-parameter models of the directional spreading of short wind waves from the power spectrum of high-frequency (HF) radar backscatter. The wind waves have a wavelength of half the radio wavelength that, for the data presented here, is at a frequency of 0.53 Hz. The parameters are short-wave direction, which at this frequency can be identified with wind direction, and the directional spread angle, the parameterization of which is model dependent. For the data presented here, the results suggest that the Donelan directional spreading model provides a better description of directional spreading than the coss model. The HF radar and wave buoy measurements are compared and show good agreement. Measurements are presented that show the temporal and spatial structure of the short-wave field responding to the passage of a frontal system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.