Abstract

In this paper, the maximum likelihood estimation (MLE) of the direction of departure (DOD) and direction of arrival (DOA) of multiple targets for bistatic multiple input multiple output (MIMO) radar is addressed. We derive the maximum likelihood estimator of the DOD and DOA with the assumption that the targets are unknown but deterministic. Moreover, we provide a compact expression of the Cramer Rao bound (CRB) under this nonrandom framework. Since the MLE of the target DOD and DOA is related to a high-dimensional nonlinear optimization problem, we propose alternating projection (AP) to solve it efficiently. Numerical simulations demonstrate that the AP based MLE can provide accurate estimations of the target DOD and DOA and achieves the CRB in the asymptotic region. Furthermore, results also show that the proposed algorithm outperforms the existing ESPRIT and MUSIC algorithm for the uniform linear array (ULA) configuration of the transmitted and received array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.