Abstract

SummaryLet X1,…,Xn be independent and identically distributed random vectors with a (Lebesgue) density f. We first prove that, with probability 1, there is a unique log-concave maximum likelihood estimator f^n of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-constructive, we can reformulate the issue of computing f^n in terms of a non-differentiable convex optimization problem, and thus combine techniques of computational geometry with Shor’s r-algorithm to produce a sequence that converges to f^n. An R version of the algorithm is available in the package LogConcDEAD—log-concave density estimation in arbitrary dimensions. We demonstrate that the estimator has attractive theoretical properties both when the true density is log-concave and when this model is misspecified. For the moderate or large sample sizes in our simulations, f^n is shown to have smaller mean integrated squared error compared with kernel-based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in practice. We also present a real data clustering example, which shows that our methodology can be used in conjunction with the expectation–maximization algorithm to fit finite mixtures of log-concave densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call