Abstract
Maximum likelihood estimation of a log-concave density has attracted considerable attention over the last few years. Several algorithms have been proposed to estimate such a density. Two of those algorithms, an iterative convex minorant and an active set algorithm, are implemented in the <b>R</b> package <b>logcondens</b>. While these algorithms are discussed elsewhere, we describe in this paper the use of the <b>logcondens</b> package and discuss functions and datasets related to log-concave density estimation contained in the package. In particular, we provide functions to (1) compute the maximum likelihood estimate (MLE) as well as a smoothed log-concave density estimator derived from the MLE, (2) evaluate the estimated density, distribution and quantile functions at arbitrary points, (3) compute the characterizing functions of the MLE, (4) sample from the estimated distribution, and finally (5) perform a two-sample permutation test using a modified Kolmogorov-Smirnov test statistic. In addition, <b>logcondens</b> makes two datasets available that have been used to illustrate log-concave density estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.