Abstract

Data sparseness or overfitting is a serious problem in natural language processing employing machine learning methods. This is still true even for the maximum entropy (ME) method, whose flexible modeling capability has alleviated data sparseness more successfully than the other probabilistic models in many NLP tasks. Although we usually estimate the model so that it completely satisfies the equality constraints on feature expectations with the ME method, complete satisfaction leads to undesirable overfitting, especially for sparse features, since the constraints derived from a limited amount of training data are always uncertain. To control overfitting in ME estimation, we propose the use of box-type inequality constraints, where equality can be violated up to certain predefined levels that reflect this uncertainty. The derived models, inequality ME models, in effect have regularized estimation with L1 norm penalties of bounded parameters. Most importantly, this regularized estimation enables the model parameters to become sparse. This can be thought of as automatic feature selection, which is expected to improve generalization performance further. We evaluate the inequality ME models on text categorization datasets, and demonstrate their advantages over standard ME estimation, similarly motivated Gaussian MAP estimation of ME models, and support vector machines (SVMs), which are one of the state-of-the-art methods for text categorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.