Abstract

The principle of maximum entropy, together with some generalizations, is interpreted as a heuristic principle for the generation of null hypotheses. The main application is to $m$-dimensional population contingency tables, with the marginal totals given down to dimension $m - r$ (restraints of the $r$th order). The principle then leads to the null hypothesis of no interaction. Significance tests are given for testing the hypothesis of no $r$th-order or higher-order interaction within the wider hypothesis of no $s$th-order or higher-order interaction, some cases of which have been treated by Bartlett and by Roy and Kastenbaum. It is shown that, if a complete set of $r$th-order restraints are given, then the hypothesis of the vanishing of all $r$th-order and higher-order interactions leads to a unique set of cell probabilities, if the restraints are consistent, but not only just consistent. This confirms and generalizes a recent conjecture due to Darroch. A kind of duality between maximum entropy and maximum likelihood is proved. Some relationships between maximum entropy, interactions, and Markov chains are proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.