Abstract
Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few methods of effectively determining the Elementary Mode Coefficient (EMC) in cases where no objective biological function is available. Therefore, we proposed a new algorithm implementing the maximum entropy principle (MEP) as an objective function for estimating the EMC. To demonstrate the feasibility of using the MEP in this way, we compared it with Linear Programming and Quadratic Programming for modeling the metabolic networks of Chinese Hamster Ovary, Escherichia coli, and Saccharomyces cerevisiae cells. The use of the MEP presents the most plausible distribution of EMCs in the absence of any biological hypotheses describing the physiological state of cells, thereby enhancing the prediction accuracy of the flux distribution in various mutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.