Abstract

Direct imaging of exoplanets presents both significant challenges and significant gains. The advantages primarily lie in receiving emitted and, with future instruments, reflected photons at phase angles not accessible by other techniques, enabling the potential for atmospheric studies and the detection of rotation and surface features. The challenges are numerous and include coronagraph development and achieving the necessary contrast ratio. Here, we address the specific challenge of determining epochs of maximum angular separation for the star and planet. We compute orbital ephemerides for known transiting and radial velocity planets, taking Keplerian orbital elements into account. We provide analytical expressions for angular star--planet separation as a function of the true anomaly, including the locations of minimum and maximum. These expressions are used to calculate uncertainties for maximum angular separation as a function of time for the known exoplanets, and we provide strategies for improving ephemerides with application to proposed and planned imaging missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call