Abstract
In this article we investigate a general class of Monge-Ampere equations in the plane, including the constant Gauss curvature equation. Our first aim is to prove some maximum and minimum principles for suitable $P$-functions, in the sense of L.E. Payne. Then, these new principles are employed to solve a general class of overdetermined Monge-Ampere problems and to investigate two boundary value problems for the constant Gauss curvature equation. More precisely, when the constant Gauss curvature equation is subject to the homogeneous Dirichlet boundary condition, we prove several isoperimetric inequalities, while when it is subject to the contact angle boundary condition, some necessary conditions of solvability, involving the curvature of the boundary of the underlying domain and the given contact angle, are derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.