Abstract

Motivated by the dispatching of trucks to shovels in surface mines, we study optimal routing in a Markovian finite-source, multi-server queueing system with heterogeneous servers, each with a separate queue. We formulate the problem of routing customers to servers to maximize the system throughput as a Markov Decision Process. When the servers are homogeneous, we demonstrate that the Shortest Queue policy is optimal, and when the servers are heterogeneous, we partially characterize the optimal policy and present a near-optimal and simple-to-implement policy. We use the model to illustrate the substantial benefits of pooling, by comparing it to the permanent assignment of customers to servers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call