Abstract

We consider the problem of routeing customers to one of two parallel queues. Arrivals are independent of the state of the system but otherwise arbitrary. Assuming that queues have infinite capacities and the service times form a sequence of i.i.d. random variables with increasing likelihood ratio (ILR) distribution, we prove that the shortest queue (SQ) policy minimizes various cost functionals related to queue lengths and response times. We give a counterexample which shows that this result is not generally true when the service times have increasing hazard rate but are not increasing in the likelihood rate sense. Finally, we show that when capacities are finite the SQ policy stochastically maximizes the departure process and minimizes the loss counting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.