Abstract

In this paper, we apply C-slow retiming and asynchronous deep pipelining to maximize the throughput-area efficiency of fully parallel low-density-parity-check (LDPC) decoding. Pipelined decoders are implemented in a 0.18 mum FDSOI CMOS process. Experimental results show that our pipelining technique is an efficient approach to maximizing LDPC decoding throughput while minimizing the area consumption. First, pipelined decoders can achieve extraordinary high throughput which non-pipelined design cannot. Second, for the same throughput, pipelined decoders use less area than non-pipelined design. Our approach can improve the throughput of a published implementation by 4 times with only about 80% area overhead. Without using clocks, proposed asynchronous pipelined decoders are more scalable in design complexity and more robust to process-voltage-temperature variations than existing clock-based LDPC decoders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call