Abstract

In order to compare the maximum potential environmental impact savings that may result from the implementation of innovative biorefinery alternatives at a regional scale, the Territorial Metabolism-Life Cycle Assessment (TM-LCA) framework is implemented. With the goal of examining environmental impacts arising from technology-to-region (territory) compatibility, the framework is applied to two biorefinery alternatives, treating a mixture of cow manure and grape marc. The biorefineries produce either biogas alone or biogas and polyhydroxyalkanoates (PHA), a naturally occurring polymer. The production of PHA substitutes either polyethylene terephthalate (PET) or biosourced polylactide (PLA) production. The assessment is performed for two regions, one in Southern France and the other in Oregon, USA. Changing energy systems are taken into account via multiple dynamic energy provision scenarios. Territorial scale impacts are quantified using both LCA midpoint impact categories and single score indicators derived through multi-criteria decision assessment (MCDA). It is determined that in all probable future scenarios, a biorefinery with PHA-biogas co-production is preferable to a biorefinery only producing biogas. The TM-LCA framework facilitates the capture of technology and regionally specific impacts, such as impacts caused by local energy provision and potential impacts due to limitations in the availability of the defined feedstock leading to additional transport.

Highlights

  • Life cycle assessment (LCA) is a tool designed to quantify the environmental impact potential of products and services [1]

  • It is worth noting that in some of the impact categories the difference between the two scenarios is so small that, keeping in mind the considerable uncertainty of LCA results in general, it is fair to say that both PHA-biogas and biogas-only are essentially equal in terms of environmental impact. This is true for the Particulate Matter (PM), Fresh Water Ecotoxicity (FWE), Land Use (LU), Marine Ecotoxicity (MEtox), Marine Eutrophication (ME), Mineral Resource Scarcity (MRC), both Ozone Formation categories, Terrestrial Acidification (TA), and Stratospheric Ozone Depletion (SOD) impact categories

  • Based on the results of this study, it can be concluded that when a biorefinery is installed in Oregon or Languedoc-Roussillon to handle a mix of grape marc and cow waste, it is very likely that it would be environmentally beneficial to include PHA production in addition to energy and digestate production

Read more

Summary

Introduction

Life cycle assessment (LCA) is a tool designed to quantify the environmental impact potential of products and services [1]. Dynamism in LCA allows for the quantification of impacts while taking into consideration changing background and foreground systems, e.g., amounts of renewable and fossil energy sources in the electrical energy mix of a specific location in the background, and improvement to processing technologies in the foreground. On the other hand, coupling urban metabolism to LCA allows for large-scale assessments that better predict large-scale consequences of implementing a change at regional scale. These advances are an especially important input that can help guide the transition into a sustainable bioeconomy, as they allow for prospective studies. LCA of production systems/technologies, such as various agricultural productions, e.g., wine, cereal, and meat, can benefit from applying some of the new developments, since the large inputs and outputs to these systems, most likely, will have great environmental implications when changes to the production are implemented

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call