Abstract
This paper proposes a bi-objective optimization method for the small satellite components layout optimization design, considering mass characteristics and fundamental frequency characteristics. Firstly, φ function is used to describe the geometry and position relationships between components, effectively addressing the non-overlap constraints among them. Then, the finite element method is used to calculate the stiffness and mass of the satellite load-bearing board to determine the fundamental frequency of the satellite. In addition, the paper designs a novel bi-objective optimization algorithm combined Diverse Gradient Optimization (DGO) algorithm with the Smart Normal Constraint (SNC) method, which simplifies the complex gradient calculation through semi-analytical sensitivity analysis. Finally, numerical examples validate the applicability and rationality of the proposed optimization method in solving bi-objective satellite components layout problems. The results show that the method can provide effective solutions for the layout design of small satellite components while considering both mass characteristics and fundamental frequency characteristics optimization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have