Abstract

In the past two decades, the exploration of quantumness within Schwarzschild spacetime has garnered significant interest, particularly regarding the Hawking radiation’s impact on quantum correlations and quantum coherence. Building on this foundation, we investigate how Hawking radiation influences maximal steered coherence (MSC)-a crucial measure for gauging the ability to generate coherence through steering. We find that as the Hawking temperature increases, the physically accessible MSC degrade while the unaccessible MSC increase. This observation is attributed to a redistribution of the initial quantum correlations, previously acknowledged by inertial observers, across all bipartite modes. In particular, we find that in limit case that the Hawking temperature tends to infinity, the accessible MSC equals to 1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1/\\sqrt{2}$$\\end{document} of its initial value, and the unaccessible MSC between mode A and B¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\overline{B}$$\\end{document} also equals to the same value. Our findings illuminate the intricate dynamics of quantum information in the vicinity of black holes, suggesting that Hawking radiation plays a pivotal role in reshaping the landscape of quantum coherence and entanglement in curved spacetime. This study not only advances our theoretical understanding of black hole thermodynamics but also opens new avenues for investigating the interface between quantum mechanics and general relativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.