Abstract

This paper discusses a surprising relationship between the quantum cohomology of the variety of complete flags and the partially ordered set of Newton polygons associated to an element in the affine Weyl group. One primary key to establishing this connection is the fact that paths in the quantum Bruhat graph, which is a weighted directed graph with vertices indexed by elements in the finite Weyl group, encode saturated chains in the strong Bruhat order on the affine Weyl group. This correspondence is also fundamental in the work of Lam and Shimozono establishing Peterson's isomorphism between the quantum cohomology of the finite flag variety and the homology of the affine Grassmannian. In addition, using some geometry associated to the poset of Newton polygons, one obtains independent proofs for several combinatorial statements about paths in the quantum Bruhat graph and its symmetries, which were originally proved by Postnikov using the tilted Bruhat order. An important geometric application of this work is an inequality which provides a necessary condition for non-emptiness of certain affine Deligne-Lusztig varieties in the affine flag variety. Cet article étudie une relation surprenante entre la cohomologie quantique de la variété de drapeaux complets et l'ensemble partiellement ordonné de polygones de Newton associé à un élément du groupe de Weyl affine. L’élément clé pour établir cette connexion est le fait que les chemins dans le graphe de Bruhat quantique, qui est un graphe orienté pondéré dont les sommets sont indexés par des éléments du groupe de Weyl fini, encodent des chaînes saturées dans l'ordre de Bruhat fort sur le groupe de Weyl affine. Cette correspondance est aussi fondamentale dans les travaux de Lam et Shimonozo qui établissent l'isomorphisme de Peterson entre la cohomologie quantique de la variété de drapeaux finie et l'homologie de la Grassmannienne affine. De plus, en utilisant la géométrie associée à l'ensemble partiellement ordonné des polygones de Newton, on obtient des preuves indépendantes pour plusieurs assertions combinatoires sur les chemins dans le graphe de Bruhat quantiques et les symétries de ce graphe, qui ont été originellement démontrées par Postnikov en utilisant l'ordre de Bruhat incliné. Une application géométrique importante de ce travail est une inégalité qui donne une condition nécessaire pour que certaines variétés de Deligne-Lusztig affines dans la variété de drapeaux affine soient non-vides.

Highlights

  • This paper investigates connections between the geometry and combinatorics in two different, but surprisingly related contexts: families of subvarieties of the affine flag variety in characteristic p > 0 and the quantum cohomology of the complex flag variety

  • The main result in this paper shows that there is a closed combinatorial formula for the maximal element in the poset of Newton polygons associated to a fixed affine Weyl group element in terms of paths in the quantum Bruhat graph, which is a directed graph with vertices indexed by the elements of the Weyl group and weights given by the reflections used to get from one element to the other

  • The maximal Newton polygon is given by taking the translation part of x and subtracting the coroot corresponding to the weight of any path of minimal length in the quantum Bruhat graph from vw[0] to w−1vw[0], where w0 is the longest element in the finite Weyl group

Read more

Summary

Introduction

This paper investigates connections between the geometry and combinatorics in two different, but surprisingly related contexts: families of subvarieties of the affine flag variety in characteristic p > 0 and the quantum cohomology of the complex flag variety. The main result in this paper shows that there is a closed combinatorial formula for the maximal element in the poset of Newton polygons associated to a fixed affine Weyl group element in terms of paths in the quantum Bruhat graph, which is a directed graph with vertices indexed by the elements of the Weyl group and weights given by the reflections used to get from one element to the other. The maximal Newton polygon is given by taking the translation part of x and subtracting the coroot corresponding to the weight of any path of minimal length in the quantum Bruhat graph from vw[0] to w−1vw[0], where w0 is the longest element in the finite Weyl group.

Notation
The Poset of Newton Polygons
Newton polygons from isocrystals
Newton polygons from characteristic polynomials
Newton polygons associated to an affine Weyl group element
Maximal Newton polygons
Quantum Schubert Calculus
The definition of the quantum Bruhat graph
Results in quantum Schubert calculus
Affine Deligne-Lusztig Varieties and Mazur’s Inequality
The quantum Bruhat graph and affine Bruhat order
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call