Abstract

We discuss a surprising relationship between the partially ordered set of Newton points associated with an affine Schubert cell and the quantum cohomology of the complex flag variety. The main theorem provides a combinatorial formula for the unique maximum element in this poset in terms of paths in the quantum Bruhat graph, whose vertices are indexed by elements in the finite Weyl group. Key to establishing this connection is the fact that paths in the quantum Bruhat graph encode saturated chains in the strong Bruhat order on the affine Weyl group. This correspondence is also fundamental in the work of Lam and Shimozono establishing Peterson’s isomorphism between the quantum cohomology of the finite flag variety and the homology of the affine Grassmannian. One important geometric application of the present work is an inequality which provides a necessary condition for nonemptiness of certain affine Deligne–Lusztig varieties in the affine flag variety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.