Abstract

Mechanical models are governed either by partial differential equations with boundary conditions and initial conditions (e.g., in the frame of continuum mechanics) or by ordinary differential equations (e.g., after discretization via Galerkin procedure or directly from the model description) with the initial conditions. In order to study dynamical behavior of mechanical systems with a finite number of degrees of freedom including nonsmooth terms (e.g., friction), we consider here problems governed by differential inclusions. To describe effects of particular constitutive laws, we add a delay term. In contrast to previous papers, we introduce delay via a Volterra kernel. We provide existence and uniqueness results by using an Euler implicit numerical scheme; then convergence with its order is established. A few numerical examples are given.

Highlights

  • Differential inclusions are often used for modeling of nonsmooth terms occurring from applied sciences: for example, friction [1, 2, 3] and impacts [6, 9]

  • Only simple models for the delay term have been studied, involving the particular form G(u(t − τ)) inserted in the evolution equation: that is, only one delay time τ or a finite number of delay times have been taken into account

  • As in [2], we study differential inclusion (2.2), by introducing a numerical scheme

Read more

Summary

MAXIMAL MONOTONE MODEL WITH DELAY TERM OF CONVOLUTION

Mechanical models are governed either by partial differential equations with boundary conditions and initial conditions (e.g., in the frame of continuum mechanics) or by ordinary differential equations (e.g., after discretization via Galerkin procedure or directly from the model description) with the initial conditions. In order to study dynamical behavior of mechanical systems with a finite number of degrees of freedom including nonsmooth terms (e.g., friction), we consider here problems governed by differential inclusions. To describe effects of particular constitutive laws, we add a delay term. In contrast to previous papers, we introduce delay via a Volterra kernel. We provide existence and uniqueness results by using an Euler implicit numerical scheme; convergence with its order is established.

Introduction
Conclusions and perspectives

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.