Abstract
This paper introduces an alternative method artificial neural networks (ANN) used to obtain numerical solutions of mathematical models of dynamic systems, represented by ordinary differential equations (ODEs) and partial differential equations (PDEs). The proposed trial solution of differential equations (DEs) consists of two parts: The initial and boundary conditions (BCs) should be satisfied by the first part. However, the second part is not affected from initial and BCs, but it only tries to satisfy DE. This part involves a feedforward ANN containing adjustable parameters (weight and bias). The proposed solution satisfying boundary and initial condition uses a feedforward ANN with one hidden layer varying the neuron number in the hidden layer according to complexity of the considered problem. The ANN having appropriate architecture has been trained with backpropagation algorithm using an adaptive learning rate to satisfy DE. Moreover, we have, first, developed the general formula for the numerical solutions of nth-order initial-value problems by using ANN. For numerical applications, the ODEs that are the mathematical models of linear and non-linear mass-damper-spring systems and the second- and fourth-order PDEs that are the mathematical models of the control of longitudinal vibrations of rods and lateral vibrations of beams have been considered. Finally, the responses of the controlled and non-controlled systems have been obtained. The obtained results have been graphically presented and some conclusion remarks are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.