Abstract
The principal resonance of second-order system to random parametric excitation is investigated. The method of multiple scales is used to determine the equations of modulation of amplitude and phase. The effects of damping, detuning, bandwidth, and magnitudes of random excitation are analyzed. The explicit asymptotic formulas for the maximum Lyapunov exponent is obtained. The almost-sure stability or instability of the stochastic Mathieu system depends on the sign of the maximum Lyapunov exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.