Abstract

The principal resonance of the stochastic Mathieu oscillator to randomparametric excitation is investigated. The method of multiple scales isused to determine the equations of modulation of amplitude and phase.The behavior, stability and bifurcation of steady state response arestudied by means of qualitative analyses. The effects of damping,detuning, bandwidth, and magnitudes of random excitation are analyzed.The explicit asymptotic formulas for the maximum Lyapunov exponent areobtained. The almost-sure stability or instability of the stochasticMathieu system depends on the sign of the maximum Lyapunov exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.