Abstract
In this paper we present an abstract maximal $L^p$-regularity result up to $T = \infty$, that is tuned to capture (linear) Partial Differential Equations of parabolic type, defined on a bounded domain and subject to finite dimensional, stabilizing, feedback controls acting on (a portion of) the boundary. Illustrations include, beside a more classical boundary parabolic example, two more recent settings: (i) the $3d$-Navier-Stokes equations with finite dimensional, localized, boundary tangential feedback stabilizing controls as well as Boussinesq systems with finite dimensional, localized, feedback, stabilizing, Dirichlet boundary control for the thermal equation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have