Abstract

This paper presents an interconnect resilient (IR) methodology with maximal interconnect fault tolerance, yield, and reliability for both single and multiple interconnect faults under stuck-at and open fault models. By exploiting multiple routes inherent in an interconnect structure, this method can tolerate faulty connections by efficiently finding alternative paths. The proposed approach is compatible with previous interconnect detection and diagnosis methods under oscillation ring schemes, and together they can be applied to implement a robust interconnect structure that may still provide correct communication even under multiple link faults in Network-on-Chips (NoCs). With such knowledge, designers can significantly improve interconnect reliability by augmenting vulnerable interconnect structures in NoCs. As a result, the experimental results show that alternative paths in NoCs can be found for almost all paths. Hence, the proposed method provides a good way to achieve fault tolerance and reliability/yield improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call