Abstract

Maximality is a desirable property of paraconsistent logics, motivated by the aspiration to tolerate inconsistencies, but at the same time retain from classical logic as much as possible. In this paper we introduce the strongest possible notion of maximal paraconsistency, and investigate it in the context of logics that are based on deterministic or non-deterministic three-valued matrices. We show that all reasonable paraconsistent logics based on three-valued deterministic matrices are maximal in our strong sense. This applies to practically all three-valued paraconsistent logics that have been considered in the literature, including a large family of logics which were developed by da Costa's school. Then we show that in contrast, paraconsistent logics based on three-valued properly nondeterministic matrices are not maximal, except for a few special cases (which are fully characterized). However, these non-deterministic matrices are useful for representing in a clear and concise way the vast variety of the (deterministic) three-valued maximally paraconsistent matrices. The corresponding weaker notion of maximality, called premaximal paraconsistency, captures the "core" of maximal paraconsistency of all possible paraconsistent determinizations of a non-deterministic matrix, thus representing what is really essential for their maximal paraconsistency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call