Abstract

AbstractWe consider the MAX k‐CUT problem on random graphs Gn,p. First, we bound the probable weight of a MAX k‐CUT using probabilistic counting arguments and by analyzing a simple greedy heuristic. Then, we give an algorithm that approximates MAX k‐CUT in expected polynomial time, with approximation ratio 1 + O((np)‐1/2). Our main technical tool is a new bound on the probable value of Frieze and Jerrum's semidefinite programming (SDP)‐relaxation of MAX k‐CUT on random graphs. To obtain this bound, we show that the value of the SDP is tightly concentrated. As a further application of our bound on the probable value of the SDP, we obtain an algorithm for approximating the chromatic number of Gn,p, 1/n ≤ p ≤ 0.99, within a factor of O((np)1/2) in polynomial expected time, thereby answering a question of Krivelevich and Vu. We give similar algorithms for random regular graphs. The techniques for studying the SDP apply to a variety of SDP relaxations of further NP‐hard problems on random structures and may therefore be of independent interest. For instance, to bound the SDP we estimate the eigenvalues of random graphs with given degree sequences. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.