Abstract
In this note we study the Matuszewska–Orlicz indices of Young and φ -functions and their conjugates. It is known, for example, that the index at zero of the inverse of a φ -function corresponds to the reciprocal of the index at infinity of the φ -function itself, and vice-versa . Likewise, the index at zero of the complementary Young function matches the Hölder conjugate of the index at infinity and the same holds for the opposite index. In this article we prove that the Matuszewska–Orlicz indices of the Sobolev conjugate Young function are equal to the Sobolev conjugate of the corresponding indices of the Young function. We then provide some examples as well which highlight the importance of an asymptotic condition in connection with Karamata theorem. Finally, we present a few examples and applications in the context of Orlicz spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Partial Differential Equations in Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.