Abstract

In rhesus monkeys undergoing ovarian stimulation for in vitro fertilization (IVF), a midcycle injection of human chorionic gonadotropin (hCG) substitutes for the LH surge and induces preovulatory oocyte maturation. The time interval between injection and oocyte collection, ideally, allows for the completion of oocyte maturation without ovulation, which would reduce the number of oocytes available for harvest. To evaluate the influence of this time interval on oocyte parameters following hCG administration, we conducted a series of gonadotropin treatment protocols in 51 animals in which the interval from hCG administration to follicular aspiration was systematically varied from 27 to 36 hr. Follicle number and size, evaluated prior to hCG administration by sonography, did not vary significantly or consistently with preovulatory maturation time. Oocytes were harvested by laparotomy or laparoscopy, and scored for maturity before insemination. The percentage of mature, metaphase II (MII) oocytes at recovery increased significantly with increasing preovulatory time and was inversely proportional to that of metaphase I (MI) oocytes. However, oocyte yield tended toward a progressive decrease with increasing preovulatory maturation times from a high of 27 oocytes at 27 hr to a low of 17 oocytes/animal at the 36 hr time interval. Fertilization levels declined significantly from a high of 50% at 27 hr to a low of 30% at 36 hr. Thus, although higher percentages of mature oocytes were recovered at the longer time intervals, optimal oocytes/embryo harvests were realized after the shorter time intervals (27 and 32 hr) and are most compatible with the goal of achieving high yields of fertile oocytes and embryos following gonadotropin stimulation in rhesus monkeys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.