Abstract

During adolescence event-related modulations of the neural response may increase. For slow event-related components, such as the P3, this developmental change may be masked due to increased amplitude levels of ongoing delta and theta oscillations in adolescents. In a cross-sectional study design, EEG was measured in 51 participants between 13 and 24years. A visual oddball paradigm was used to elicit the P3. Our analysis focused on fronto-parietal activations within the P3 time-window and the concurrent time-frequency characteristics in the delta (∼0.5-4Hz) and theta (∼4-7Hz) band. The parietal P3 amplitude was similar across the investigated age range, while the amplitude at frontal regions increased with age. The pre-stimulus amplitudes of delta and theta oscillations declined with age, while post-stimulus amplitude enhancement and inter-trial phase coherence increased. These changes affected fronto-parietal electrode sites. The parietal P3 maximum seemed comparable for adolescents and young adults. Detailed analysis revealed that within the P3 time-window brain maturation during adolescence may lead to reduced spontaneous slow-wave oscillations, increased amplitude modulation and time precision of event-related oscillations, and altered P3 scalp topography. Time-frequency analyses may help to distinguish selective neurodevelopmental changes within the P3 time window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call