Abstract

The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a “slow” or “fast” mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

Highlights

  • Different forms of memory are supported by the hippocampus, striatum, and cortex

  • Mnemonic processes are associated with different neuronal oscillations, but with remarkable consistency across different brain regions and types of memory

  • While boosts in gamma power are ubiquitous in the regions we considered, increases in theta are associated mainly with the hippocampus and its direct projection targets, such as the striatum and amygdala

Read more

Summary

Introduction

Different forms of memory are supported by the hippocampus, striatum, and cortex (here defined to include the neocortex and parahippocampal regions).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call