Abstract

We present ab-initio calculations of the binding energy and radii of the two-neutron halo nucleus 6He using two-body low-momentum interactions based on chiral effective field theory potentials. Calculations are performed via a hyperspherical harmonics expansion where the convergence is sped up introducing an effective interaction for non-local potentials. The latter is essential to reach a satisfactory convergence of the extended matter radius and of the point-proton radius. The dependence of the results on the resolution scale is studied. A correlation is found between the radii and the two-neutron separation energy. The importance of three-nucleon forces is pointed out comparing our results and previous calculations to experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.