Abstract

This paper presents a novel matrix unit cell scheduler (MUCS) for input-buffered asynchronous transfer mode (ATM) switches. The MUCS concept originates from a heuristic strategy that leads to an optimal solution for cell scheduling. Numerical analysis indicates that input-buffered ATM switches scheduled by MUCS can utilize nearly 100% of the available link bandwidth. A transistor-level MUCS circuit has been designed and verified using HSPICE. The circuit features a regular structure, minimal interconnects, and a low transistor count. HSPICE simulation indicates that using 2-μm CMOS technology, the MUCS circuit can operate at clock frequency of 100 MHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.