Abstract

Matrix metalloproteinase-9 (MMP-9) has emerged as a physiological regulator of NMDA receptor (NMDAR)-dependent synaptic plasticity and memory. The pathways by which MMP-9 affects NMDAR signaling remain, however, elusive. Using single quantum dot tracking, we demonstrate that MMP-9 enzymatic activity increases NR1-NMDAR surface trafficking but has no influence on AMPA receptor mobility. The mechanism of MMP-9 action on NMDAR is not mediated by change in overall extracellular matrix structure nor by direct cleavage of NMDAR subunits, but rather through an integrin beta1-dependent pathway. These findings describe a new target pathway for MMP-9 action in key physiological and pathological brain processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.