Abstract

Embryo implantation in humans and rodents is a highly invasive yet tightly controlled process involving extracellular matrix (ECM) degradation. Matrix metalloproteinase 9 (MMP-9) has been implicated as the major facilitator of this ECM degradation. MMP-9 is expressed by the embryo's trophoblast cells, whereas tissue inhibitor of metalloproteinases 3 (TIMP-3) is expressed by the maternal uterine cells immediately adjacent to the trophoblast. We examined the functional roles of MMP-9 and TIMP-3 during in vitro ECM degradation by mouse embryos. Blastocysts were treated with either MMP-9 antisense or sense oligonucleotides and incubated on an ECM gel. The extent of ECM degradation exhibited by the blastocysts due to proteinase secretion was quantified. Embryos exposed to MMP-9 antisense oligonucleotides exhibited reduced ECM-degrading activity as compared with controls, and this reduced activity was correlated with the level of MMP-9 secreted by the embryos. The functional role of TIMP-3 was then examined by incubating blastocysts on an ECM gel that had been impregnated with various amounts of TIMP-3. In a dose-dependent manner, increases in TIMP-3 resulted in a reduction in ECM degradation and were correlated with diminished MMP-9 activity. These results provide important functional evidence that in vitro ECM degradation is regulated by embryo-derived MMP-9 and ECM-derived TIMP-3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.