Abstract
There is accumulating evidence of complicated interactions among vascular cells, i.e. endothelial cells, smooth muscle cells and monocytes/macrophages, in the regulation of vascular function and remodeling. We have investigated the mechanisms responsible for matrix metalloproteinase (MMP)-1 expression by interactions between monocytes and vascular endothelial cells. THP-1 cells (human monocytic cell line) and human umbilical vein endothelial cells (HUVECs) were cocultured. MMP-1 levels in the culture medium were measured by enzyme-linked immunosorbent assays. Collagenolytic activity in the culture medium was measured by fluorescence labeled-collagen digestion. Immunohistochemistry using an anti-MMP antibody was carried out to determine which types of cell produce MMP-1. The addition of THP-1 cells to HUVECs for 48 h induced increases in MMP-1 levels and collagenolytic activity, which were 5- and 2-fold relative to those of HUVECs alone, respectively. A separate coculture experiment revealed that direct contact of THP-1 cells and HUVECs contributed to enhanced MMP-1 production in the cocolture. Immunohistochemical analysis revealed that both types of cell produce MMP-1 in the coculture. Neutralizing anti-interleukin-1 β and tumor necrosis factor- α antibodies inhibited MMP-1 production by the coculture. The Src kinase and MEK inhibitors significantly inhibited MMP-1 production by the coculture. Coculture of THP-1 cells and HUVECs induced significant increases in Src and mitogen activated protein (MAP) kinase activities. Enhanced MMP-1 expression induced by monocyte–endothelial cell interactions may play an important role in the pathogenesis of atherosclerosis and plaque rupture.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have