Abstract

We have assessed how variation in the matrix of control materials would affect error detection and false-rejection characteristics of quality-control (QC) procedures used to monitor PO2 in blood gas measurements. To determine the expected QC performance, we generated power curves for S(mat)/S(meas) ratios of 0.0-4.0. These curves were used to estimate the probabilities of rejecting analytical runs having medically important errors, calculated from the quality required by the CLIA '88 proficiency testing criterion and the precision and accuracy expected for a typical analytical system. When S(mat)/S(meas) ratios are low, the effects of matrix on QC performance are not serious, permitting selections of QC procedures based on simple power curves for a single component of variation. As S(mat)/S(meas) ratios increase, single-rule procedures generally show a loss in error detection, whereas multirule procedures, including the 3(1)s control rule, show an increase in false rejections. An optimized QC design is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.