Abstract

A dynamic Monte Carlo program, including an improved bombardment‐induced Gibbsian segregation (BIGS) model was employed to study the matrix effect of BIGS and its influence on Cu depletion at the subsurface under 1 keV Ar ion bombardment of a Cu–Ni alloy. The calculated results show that not only at high fluence (the steady‐state) but also at low fluence the Cu subsurface depletion depends on its bulk composition. This is because the atomic jump rate W21 of Cu from the second layer to the first layer is correlated to Cu bulk composition at any fluence. We also found that the product of the nonsegregating species concentration in the first layer with the segregating species concentration in the second layer plays a more important role than other parameters in determining W21 under low current conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.