Abstract

Engineered nanoparticles such as iron oxide (Fe3O4) nanoparticles (IONPs) offer several benefits in nanomedicine, notably as contrast agents in magnetic resonance imaging (MRI). Ferumoxytol, a suspension of IONPs (with a manufacturer's reported particle diameter of 27 nm–30 nm) was characterized as a standard by spiking into rat blood plasma and cell fractions. Nanoparticle separation, and characterisation was investigated with asymmetric flow field-flow fractionation (AF4) coupled online to ultraviolet-visible spectroscopy (UV-VIS), multi-angle light scattering (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) detectors; also with single particle inductively coupled plasma mass spectrometry (spICP-MS) and transmission electron microscopy (TEM). MALS signal of pristine Ferumoxytol indicated radii of gyration (Rg) between 15 and 28 nm for the Fe-containing fraction and 30–75 nm for the non-Fe fraction. IONPs spiked into blood plasma indicated a polydisperse distribution between 40 nm - 120 nm suggesting matrix-induced size alterations. Spiking of the IONPs into cells showed a shift in ICP-MS Fe signal to 15 min, however the MALS signal was undetected within the Fe containing fraction of the IONPs suggesting NP loss due to membrane-particle attraction. spICP-MS analysis of IONPs spiked in rat plasma suggested the release of Fe-containing colloids into plasma causing an increase in diameter of IONPs to 52 ± 0.8 nm; whereas no major variation in particle size and distribution of the IONPs spiked in cell fractions was observed (33.2 ± 2.0 nm) suggesting non-alteration of the NP Fe core. A complementary application of microscopic, light scattering, and mass spectrometry techniques for the characterisation of NPs in challenging biological matrices like blood has been demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call