Abstract
Extraction of peptides by reverse micelle-forming amphiphilic homopolymers and subsequent matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection of these peptides in the presence of these polymers can significantly enhance peptide ion signals. Here, the mechanism of this MALDI signal enhancement is investigated. We find that the signal enhancement is caused by coalescence of polymer-peptide conjugates into "hotspots" on the MALDI target. Hotspot formation is observed only on hydrophilic surfaces and not hydrophobic surfaces. With the use of an Anchorchip MALDI target, which contains very small hydrophilic spots surrounded by a larger hydrophobic area, we find that this hotspot formation can be further exploited for ultrasensitive MALDI-MS analyses of peptides and peptide mixtures. MALDI-MS signals can be enhanced by 3-5 orders of magnitude when peptides are extracted by the amphiphilic homopolymers and detected on the Anchorchip MALDI target. This signal enhancement combined with the extraction selectivity of these reverse micelle-forming homopolymers makes these materials promising tools for sensitive detection of peptides in complex mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.