Abstract

BackgroundCurrent risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combination of peptides identified with MALDI-MS will better predict clinical outcomes of patients with HF.MethodsA cohort of 100 patients with HF were recruited in the biomarker discovery phase (50 patients who died or had a HF hospital admission vs. 50 patients who did not have an event). The peptide extraction from plasma samples was performed using reversed phase C18. Then samples were analysed using MALDI-MS. A multiple peptide biomarker model was discovered that was able to predict clinical outcomes for patients with HF. Finally, this model was validated in an independent cohort with 100 patients with HF.ResultsAfter normalisation and alignment of all the processed spectra, a total of 11,389 peptides (m/z) were detected using MALDI-MS. A multiple biomarker model was developed from 14 plasma peptides that was able to predict clinical outcomes in HF patients with an area under the receiver operating characteristic curve (AUC) of 1.000 (p = 0.0005). This model was validated in an independent cohort with 100 HF patients that yielded an AUC of 0.817 (p = 0.0005) in the biomarker validation phase. Addition of this model to the BIOSTAT risk prediction model increased the predictive probability for clinical outcomes of HF from an AUC value of 0.643 to an AUC of 0.823 (p = 0.0021). Moreover, using the prediction model of fourteen peptides and the composite model of the multiple biomarker of fourteen peptides with the BIOSTAT risk prediction model achieved a better predictive probability of time-to-event in prediction of clinical events in patients with HF (p = 0.0005).ConclusionsThe results obtained in this study suggest that a cluster of plasma peptides using MALDI-MS can reliably predict clinical outcomes in HF that may help enable precision medicine in HF.

Highlights

  • Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value

  • The added value of the multiple peptide biomarker model on top of the BIOSTAT risk prediction model Recently, we developed a risk prediction model for patients with HF from the BIOSTAT-CHF cohort [14] which risk scores can be calculated using the online calculator available at: http://www.biostat-chf.eu that is displayed in Fig. 2 and Table 4

  • The findings in this study demonstrated that there is a lot of predictive information in the proteomics which are not represented by the clinical factors and well-known biomarkers in the BIOSTAT risk prediction model

Read more

Summary

Introduction

Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combination of peptides identified with MALDI-MS will better predict clinical outcomes of patients with HF. To the best of our knowledge, there has not been any study using MALDI-MS technology that enables the detection of novel biomarkers predicting clinical outcomes in patients with HF. The main aim of this study was to develop a plasma peptide model that would enable better prediction of clinical outcomes in patients with HF. In this turn, this may help increase our understanding of the pathophysiology of HF

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call