Abstract
Mating behavior in rodents can modulate pain sensations in both sexes. In males, the execution of mounts, intromissions, and ejaculations induced a progressive increase in their vocalization thresholds induced by tail shocks and other types of noxious stimuli.We selectively inbred two sublines from Sprague-Dawley (SD) rats that differed in their spontaneous yawning frequency. The high-yawning (HY) subline had a mean of 20 yawns/h and a different pattern of sexual behavior characterized by longer interintromission intervals and more sexual bouts that delayed ejaculation. The low-yawning (LY) subline and SD rats yawned as a mean 2 and 1 yawns/h, respectively.So, we determine mating-induced analgesia in HY, LY, and SD male rats by measuring vocalization thresholds in response to noxious electric tail shocks. Our results showed that the magnitude of mating-induced analgesia was lower in HY and LY rats with respect to SD rats. When the rats performed different components of male sexual pattern, both sublines exhibited a significantly lower increase in their vocalization thresholds with respect to SD rats—being sublines less responsive regarding mating-induced analgesia. Pain modulation mechanisms depend on responses to stress, so the low levels of analgesia obtained in the yawning sublines may be due either to differences in their response to stress in other paradigms, or to atypical performance of male sexual behavior during mating, an event which as a stressful event in rats.Therefore, the yawning sublines are a suitable model for analyzing how a different temporal pattern in the display of male sexual behavior affects analgesia mechanisms. Our results concur with Wistar rats with different endophenotypes that could apply to humans as well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have