Abstract

BackgroundAccurate prediction of binding between class I human leukocyte antigen (HLA) and neoepitope is critical for target identification within personalized T-cell based immunotherapy. Many recent prediction tools developed upon the deep learning algorithms and mass spectrometry data have indeed showed improvement on the average predicting power for class I HLA-peptide interaction. However, their prediction performances show great variability over individual HLA alleles and peptides with different lengths, which is particularly the case for HLA-C alleles due to the limited amount of experimental data. To meet the increasing demand for attaining the most accurate HLA-peptide binding prediction for individual patient in the real-world clinical studies, more advanced deep learning framework with higher prediction accuracy for HLA-C alleles and longer peptides is highly desirable.ResultsWe present a pan-allele HLA-peptide binding prediction framework—MATHLA which integrates bi-directional long short-term memory network and multiple head attention mechanism. This model achieves better prediction accuracy in both fivefold cross-validation test and independent test dataset. In addition, this model is superior over existing tools regarding to the prediction accuracy for longer ligand ranging from 11 to 15 amino acids. Moreover, our model also shows a significant improvement for HLA-C-peptide-binding prediction. By investigating multiple-head attention weight scores, we depicted possible interaction patterns between three HLA I supergroups and their cognate peptides.ConclusionOur method demonstrates the necessity of further development of deep learning algorithm in improving and interpreting HLA-peptide binding prediction in parallel to increasing the amount of high-quality HLA ligandome data.

Highlights

  • Accurate prediction of binding between class I human leukocyte antigen (HLA) and neoepitope is critical for target identification within personalized T-cell based immunotherapy

  • In the past several years, a variety of deep learning models such as deep neural network [3], convolutional neural network [4] and recurrent neural network [5] have been developed for advancing HLA-peptide prediction over traditional machine learning algorithms [6]

  • Since there are fewer data of HLA-C in the training dataset than those of HLA-A and HLA-B, we demonstrate that our model can outcompete both pan-allele and allele-specific models for HLA-C alleles in the context of limited number of training data

Read more

Summary

Introduction

Accurate prediction of binding between class I human leukocyte antigen (HLA) and neoepitope is critical for target identification within personalized T-cell based immunotherapy. Many recent prediction tools developed upon the deep learning algorithms and mass spectrometry data have showed improvement on the average predicting power for class I HLA-peptide interaction. Their prediction performances show great variability over individual HLA alleles and peptides with different lengths, which is the case for HLA-C alleles due to the limited amount of experimental data. It is highly desirable to establish a more robust pan-allele model that is able to predict ligands of longer lengths and of cognate peptides of HLA-C alleles with higher accuracy

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.