Abstract

We propose a multiscale method based on a finite element heterogeneous multiscale method (in space) and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with multiple scales due to spatial heterogeneities varying rapidly at a microscopic scale. The multiscale method approximates the solution at the scale of interest at computational cost independent of the small scale by performing numerical upscaling (coupling of macro and micro finite element methods). Optimal a priori error estimates in the L^2(H^1) and C^0(L^2) norm are derived taking into account the error due to time discretization as well as macro and micro spatial discretizations. Further, we present numerical simulations to illustrate the theoretical error estimates and the applicability of the multiscale method to practical problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.