Abstract
Traditional combat sports equipment usually uses synthetic materials, such as polyurethane and synthetic leather. Although these materials have a certain degree of strength and durability, they have poor flexibility and antibacterial properties, making it difficult to provide stable support and protection for athletes. In order to enhance the antibacterial properties and flexibility of sports equipment and reduce the risk of injuries to athletes, this article conducts in-depth research on the development of combat sports equipment using conjugated polymers. This article first selects polypropylene (PP) as the base material for sports equipment for combat athletes, and uses the gas phase polymerization method to prepare the material; then uses chitosan as an antimicrobial agent and uses the oxidative degradation method to prepare it; after that, this article coats the chitosan antibacterial agent on the prepared PP material, and uses a combination of dipping and calendering for antibacterial treatment; finally, this article uses the spunbond melt-blown composite method to fill and combine the top equipment of combat athletes to achieve the structural design of sports equipment. In order to verify the effectiveness of the equipment, this article conducted equipment performance testing and sports injury simulation. The results showed that the average diameter of the antibacterial zone of this sports equipment reached more than 1 mm, and in the injury risk test, the risk of athletes' joint and muscle injuries was reduced by 16.9% and 20.5% respectively. Research shows that developing combat sports equipment based on conjugated polymers can help reduce the risk of injury to athletes and improve the safety of combat sports.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.