Abstract

Diffusion transfer of atomic hydrogen through multilayer metal membranes has been studied within the lattice model of an ideal gas, with the transfer being described by a set of nonlinear algebraic equations. It has been shown that, for multilayer membranes composed of less than four layers, an analytical expression describing a diffusion flux can be derived. Atomic hydrogen transfer through a membrane consisting of a vanadium layer, the surfaces of which are coated with palladium films, has been analyzed in detail. It has been found that the value of the flux may depend on the transfer direction. The effect of diffusion asymmetry arises at finite pressures of hydrogen on the outer membrane surfaces, when its dissolution in metals is described by nonlinear sorption isotherms. The degree of the diffusion asymmetry increases with a rise in hydrogen pressure and depends on the arrangement of the layers composing a membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.