Abstract

Mathematical simulation of atomic hydrogen diffusion transfer through a bimetallic membrane is performed under the approximation of an ideal lattice gas. Analytical expressions are derived for diffusion fluxes at different membrane orientations. The intensity of diffusion transfer of hydrogen atoms through a bimetallic membrane depends on the direction of transfer, provided that they have different solubilities in metal layers. It is shown that the effect of diffusion asymmetry must be taken into account when developing and using bimetallic membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.