Abstract

A new magnetically sensitive element based on the synthesized semiconductor material has been developed. A method for the synthesis of a complex compound has been developed tetrakis-µ3-(methoxo) (methanol)-pentakis (acetylacetonate) (tricuprum (II), neodymium (III)) methanol (I). The scheme of arrangement of chemical bonds for this complex compound is offered. Conducted properties have been studied tetrakis-µ3-(methoxo) (methanol)-pentakis (acetylacetonate) (tricuprum (II), neodymium (III)) methanol (I) in compressed form in the temperature range 273 - 493 K showed that conductivity varies from 5.67 ∙ 10-14 (Ohm ∙ m)-1 at a temperature of 273 K to 1.06 (Ohm∙m)-1 at a temperature of 493 K. The experiment showed that in the temperature range 303 - 423 K resistivity of the pressed sample of the test material of compound (I) decreases from 2∙1010 Ohm∙m to 5 ∙ 102 Ohm∙m, ie the isolated compound is a semiconductor. In the developed magnetoresistor when changing the induction of the magnetic field from 10-3 to 200 mT, the resistivity varies from 3.12∙10-5 Ohm to 1.25∙10-2 Ohm∙m, and from 200 mT to 1 T, the resistivity varies from1.25∙10-2 Ohm to 0.3 Ohm. On the basis of the developed magnetically sensitive resistive element the circuit solution of the frequency transducer of a magnetic field is offered. The frequency transducer of the magnetic field is a hybrid integrated circuit consisting of a bipolar transistor and a gate gate transistor, which creates the preconditions for the creation of an autogenerator device, the feedback circuit of which includes a magnetically sensitive resistor based on tetrakis-µ3- (methoxo) (methanol)-pentakis (acetylacetonate) (tricuprum (II), neodymium (III)) methanol (I).The frequency of generation of the developed transducer increases the most in the range from 10-3 T to 0.2 T, and at a supply voltage of 5.0 V varies from 250 kHz to 600 kHz, and in the whole range of changes in magnetic field induction varies from 250 kHz to 750 kHz. The sensitivity of the developed device with frequency output for measuring the induction of the magnetic field is from 400 Hz/mT to 800 Hz/mT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.