Abstract
This paper starts from the hypothesis that algebraic reasoning can be used as an axis between different mathematical domains at school. This is relevant given the importance attributed to mathematical connections for curriculum development and the algebraic reasoning makes it possible to articulate it in a coherent manner. A definition of generalized algebraic reasoning is proposed, based on the notion of elementary algebraic reasoning of the onto-semiotic approach, and it is used to highlight the presence of typical algebraic processes in problem solving in geometrical contexts. To develop these ideas, a training course is designed and implemented with in-service secondary school teachers. Based on design-based research, the results obtained are contrasted with the expected answers. In this way, relevant information is obtained on how teachers mobilize different typically algebraic processes, that is, particularization-generalization, representation-signification, decomposition-reification and modelling. Actually, it is clear to affirm that teachers need specific training to improve their skills about how algebraic reasoning can help them to develop mathematical connections with their students.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Eurasia Journal of Mathematics, Science and Technology Education
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.