Abstract
Several mathematical models are developed to describe the effects of chemotherapy on both cancerous and normal tissue. Each model is defined by either a single homogeneous equation or a system of heterogeneous equations which describe the states of the normal and/or cancer cells. Periodic terms are added to model the effects of the chemotherapy. What we obtain are regions, in parameter space (dose and period), of acceptable drug regimens. The models take into account various aspects of chemotherapy. These include, interactions between the cancer and normal tissue, cell specific chemotherapeutic drug, the use of non-constant parameters to aid in modeling specific chemotherapeutic processes, and drug resistance. By studying the models we can obtain a better understanding of the dynamics of the chemotherapeutic drugs and how better to implement them. The mathematical methods used are mostly in the area of dynamical systems in particular Floquet Theory. These methods are used on either a single equation or a system of periodic ordinary differential equations which model the chemotherapeutic process. These are reduced to difference equations that describe the state of the cancer at the beginning of each period. By studying the characteristic multipliers, we are able to determine the bifurcation between successful and unsuccessful regimens, if existing drug regimens seem reasonable from a mathematical model standpoint, and suggest ways to better implement the existing chemotherapeutic drugs.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have